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Abstract. We examine the nonlinear modulation of an electromagnetic localized pulse in a
saturated bulk ferromagnetic medium. It is seen that the evolution of the pulse shape is governed
by a three-dimensional generalization of the Davey–Stewartson (DS) system. A classification of
the type of DS system encountered is given, with regard to the value of the physical parameters
(external field and wave frequency). Numerical computations show the various possible behaviours
of the pulse. Blow-up and spreading out occur, as well as shape modifications. Interaction with
electromagnetic long waves can even stabilize the pulse, or cut it into several parts.

1. Introduction

The problem of the propagation of localized multidimensional pulses, or wavepackets, in
nonlinear media is presently the subject of intensive research in mathematics, as well as
in fundamental or applied physics. The soliton solutions of the one-dimensional nonlinear
Schr̈odinger (1D NLS) equation are well known, but presently their generalization to multiple
dimensions is not completely solved. A rather phenomenological point of view considers the
so-called two- or three-dimensional NLS (2 or 3D NLS) equation. It gives a quite good account
of many experimental results, e.g., the collapse of optical wavepackets in Kerr media. However,
it is not integrable in the sense of complete integrability through the inverse scattering transform
(IST) method. Therefore, theoreticians studying the IST method consider other generalizations
of the 1D NLS equation, that have the integrability property. The most important of these
equations is the so-called Davey–Stewartson (DS) system. It was first derived by Davey and
Stewartson in the framework of water-wave propagation [1]. It has been shown that it is
completely integrable by means of the IST method for particular coefficient values, and admits
localized solutions: lumps, algebraically decaying at infinity, and dromions, whose behaviour
is very close to that of the 1D solitons, but which are truly 2D [2–6]. The DS system appears to
be the correct multidimensional generalization of the 1D NLS equation from this viewpoint, but
also from the following one: in every particular physical situation in which it can be relevant,
the NLS equation arises as an asymptotic weakly nonlinear behaviour of slowly modulated
wavepackets, and is derived using some multiscale expansion, or any equivalent formalism.
When performing such an expansion in a rigorous way, starting from some multidimensional
model presenting a quadratic nonlinearity, the asymptotic equation obtained is, in most cases,
of DS type. It only reduces to the 2D or 3D NLS equation for special situations with a particular
symmetry. A recent mathematical theorem by Colin [7] shows that a large class of nonlinear
PDEs, able to describe wave propagation in various domains of physics, reduce asymptotically
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to DS-like systems in such a situation. A recent paper by the present author [8] has shown
that the existence of such solitons can be expected for optical pulses in materials presenting a
non-vanishing second-order nonlinearity, under some special conditions. On the other hand,
the integrable case is rarely reached in concrete physical situations. Numerical and analytical
studies of the system show that various behaviours can be expected, showing either collapse
or spreading out [9], or less or more stable propagation.

Wave propagation in ferromagnetic media has received new interest for several reasons:
on one hand, the so-called Maxwell–Landau model governing these phenomena is of major
interest for mathematicians due to its nonlinear properties, and thus also for the theory of
nonlinear wave propagation, from the point of view of theoretical physics. On the other,
the study of wavepacket propagation in yttrium–iron–garnet (YIG) films has yielded much
theoretical and experimental work, which could prove very promising with regard to possible
applications [10, 11]. Most of the studies concern the magnetostatic spin waves (MSW) that
correspond to the part of the electromagnetic (EM) spectrum where retardation is negligible.
The study of MSW has shown the existence of 1D solitons [12, 13] and dark solitons [14].
Interactions of solitons have also been observed [15]. The blow-up of two-dimensional pulses
is also known to occur [16].

The present paper, as well as our previous ones [17], deals with the part of the EM
spectrum where neither retardation, nor magnetic effects, are negligible. Such waves are often
called magnetic polaritons. The propagation of plane waves has been extensively studied,
the linear theory was written as early as the 1950s [18–20]. More recently, the weakly
nonlinear approximation, and soliton propagation described by the NLS equation have been
investigated [17,21]. Modulational instability involving the excitation of such waves has been
observed in a YIG film [22].

The multidimensional generalization of the previous theoretical work is the aim of this
paper. After this introductory section, the first step is the derivation of an asymptotic system: the
DS system, through a multiscale expansion. This is performed in section 2. The behaviour of
the solutions of the DS system depends strongly on the sign of some of its coefficients. Once the
asymptotic (DS) system is known, with explicit expressions of its coefficients, a classification
can be given. This is done in section 3. Then the asymptotic equations must be solved
numerically, as performed in section 4. An important feature is that the numerical scheme
used depends on the type of DS system with regard to the above-mentioned classification.
When the second equation of the DS system is hyperbolic, boundary conditions are involved,
that can be nontrivial. The most important result of this paper is the physical interpretation
of these boundary conditions as describing the incident waves in some three-wave interaction,
which is resonant in some very particular sense. This interpretation is presented in section 4.2.2
and figure 7. The consequences of the theory from the experimental viewpoint are discussed
in section 5, leading to the conclusion. Technical details relating to sections 2 and 3 are given
in the appendices.

2. A 3D DS-type system

2.1. Model and ansatz

The propagation of electromagnetic waves is obviously described by the Maxwell equations,
with some constitutive relations characterizing the medium in which the wave propagates. In
ferromagnetic media, the dependency of the dielectric polarizability with regard to the electric
field is linear and scalar, while the magnetic momentumEM and inductionEB = µ0( EH + EM)
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are coupled through the so-called Landau equation:

∂t EM = −gLµ0 EM ∧ EB +
σ

‖ EM‖
EM ∧ ( EM ∧ EH) (1)

wheregL is the gyromagnetic ratio andσ a negative constant measuring the strength of
the damping. Damping is taken into account by the second term on the right-hand side of
equation (1), in a phenomenological way. Inhomogeneous exchange interaction, anisotropy
and effects related to the finite size of the sample can be taken into account by replacing the
magnetic inductionEB in equation (1) by some effective field. We neglect all these effects.
This is physically relevant if we study wave propagation, if the wavelength is large enough, if
the sample is magnetized to saturation, and if the material is isotropic. After elimination of
the electric field, the Maxwell equations reduce to

1 EH − E∇( E∇ · EH) = 1

c0
2
∂2
t (
EH + EM) (2)

wherec0 is the speed of light taking into account the electric permittivity of the medium.
Furthermore, the quantitiesEM, EH and t are rescaled intoEM ′ = gLµ0

c0
EM, EH ′ = gLµ0

c0
EH and

t ′ = c0t , so that the constantsgL, µ0 andc0 are replaced by one (in what follows the primes
are omitted).

The derivation of the DS-type asymptotic lies on the following multiscale expansion. The
fields are expanded in both a Fourier series of some fundamental phaseϕ = kx − ωt , and in
a power series of some small parameterε, as

EH =
∞∑
p=0

+p∑
n=−p

εp EHn
peinϕ. (3)

Thusε represents the order of magnitude of the ratio of the wave field amplitudeEH 1
1 to the

uniform constant fieldEH 0
0 causing saturation, called the external field. The same expansion

holds for the magnetizationEM. The amplitudesEHn
p are assumed to vary in space and time at

a rate which is slow with respect to the wavelength and period of the wave. They depend on
slow variables defined by

ξ = ε(x − V t)
η = ε(y −Wt)
ζ = ε(z− Ut)
τ = ε2t.

(4)

The slow ‘space’ variableEξ = (ξ, η, ζ ) describes the shape of the pulse propagating at the
speedEV = (V ,W,U), while the ‘time’ variableτ accounts for the evolution of this shape
during this propagation. The speedEV is to be determined: it is in fact the group velocity of
the wave. It is easily checked by considering the dispersion relation that this group velocity is
not parallel to the phase velocity (chosen as thex-axis), unless the external fieldEH 0

0 is parallel
to the propagation direction. This will be assumed below and it will be shown thatW andU
are zero in the case considered. Recall that the variableξ describing the longitudinal shape of
the pulse could also be written as a time variable, while the propagation could be written in
terms of a distance. The difference between the two variables lies in their order of magnitude
only: the orderε corresponds to lengths of the order ofλ/ε, assumed to be the size of the
pulse, while the propagation variableτ of orderε2 corresponds to propagation distances with
an order of magnitudeλ/ε2 (λ is the wavelength of the fundamental). The expressions for the
quantities involved simplify in the particular case considered here, as was already noticed when
studying the analogous 1D problem. Therefore, the computation of the successive terms of the
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perturbative scheme can only be explicitly achieved in this special case, and the corresponding
assumption will be used below.

On the other hand, the study of soliton-like propagation, and other behaviours involving
both long-distance propagation and nonlinearity makes no sense if damping is not negligible,
or at least can be considered as a higher-order perturbation. Indeed, the possibility of wave
propagation implies that the damping is weak: the absorption length must be large with respect
to the wavelength. In the same way, the modulational instability occurs only if the absorption
length is long enough, so that the instability occurs before the wave is absorbed. However,
the rate at which the modulational instability develops can be increased by increasing power
input and decreasing the pulse size, in such a way that it occurs faster than damping; but the
damping constantσ must be small by itself. By chance this condition is satisfied in the ferrites.
The dimensionless quantity

σ̃ = σ

µ0gL
(5)

always has a low value: for single-crystal ferrites, 0.01< σ̃ < 0.1, and, for YIG films,σ̃ can
reduce to a value of just below 10−4, for a resonance full linewidth1H ' 0.6 Oe [23]. It thus
can be treated in a perturbative way, as in [24]. We assume that

σ̃ = ε2σ̂ (6)

σ̂ having an order of magnitude of one. For YIG, considering the above value ofσ̃ , the
perturbative parameterε must be aboutε ' 10−2 . For a larger power input and a shorter
pulse length and width, larger values ofε can be envisaged, so thatσ̃ becomes of orderε3,
and the parameter̂σ defined by (6) can be taken as zero. The validity of this approximation
is discussed in detail, from the theoretical viewpoint, in [24], and experimentally confirmed
in [12].

2.2. Resolution of the perturbative scheme

Expansion (4) is reported into the basic equations (2) and (1), and the perturbative scheme is
then solved order by order. At orderε0 it is found that the saturation magnetizationEM0

0 is
parallel to the external fieldEH 0

0 . No demagnetizing factors are taken into account here:EH 0
0

is the field created in the medium by some applied constant and uniform fieldEH0ext, but with
EH 0

0 6= EH0ext. According to the above assumption, we set

EM0
0 = Em =

(
m

0
0

)
(7)

and consequently the zero-order condition can be expressed asEH 0
0 = α Em. Theα parameter

represents the strength of the external field.
As usual, orderε yields the dispersion relation, and the definition of the possible

polarizations:

EH 1
1 =

( 0
iδ
1

)
g

EM1
1 = −γ

( 0
iδ
1

)
g

(8)
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whereg is a function of the slow variables(Eξ, τ ) to be determined and the parameterδ = ±1
specifies the circular polarization. The other parameterγ = −1/(α + δν), whereν = ω/m is
a normalized frequency parameter. The dispersion relation can be expressed as

ω = k
√

α + δν

α + δν + 1
. (9)

At second order, the equations regarding the fundamental frequency (n = 1) yield, as a
compatibility condition, the value of the velocityV (equation (46) in appendix A). In particular,
it is proved that the group velocityEV is collinear to the phase velocity:W = U = 0. Technical
detail is given in appendix A. The important feature is that the equations for the zero-harmonic
or mean-value termsEH 0

2 or EM0
2, coming from (1), are trivial at this order. The corresponding

conditions are found at orderε4. Together with the conditions yielded by the Landau equation
at orderε2 andε3 (the compatibility condition in the latter case), they allow one to expressEH 0

2

and EM0
2 in terms of some auxiliary fields8,8′,8′′, as

EH 0
2 =

8 + 2γ 2

m
(|g|2 − ρ2)
α

1+αβ8
′

α
1+αβ8

′′

 EM0
2 =

 −2γ 2

m
(|g|2 − ρ2)

1
1+αβ8

′
1

1+αβ8
′′

 (10)

whereρ2 is some limit of|g|2.
The equation obtained at orderε3 for the fundamental frequency yields, as a compatibility

condition, the evolution equation for the amplitudeg. It reads

iA∂τg +B∂2
ξ g +C(∂2

η + ∂2
ζ )g +D(|g|2 − ρ2)g +Eg8 + i6g = 0. (11)

The computational detail is given in appendix A. The equation governing the evolution of the
auxiliary field8 results from the way it was defined when it was introduced in order to solve
the Maxwell equations at orderε4 for the mean-value field. This equation reads

∂2
ξ 8− F(∂2

η + ∂2
ζ )8 = G(∂2

η + ∂2
ζ )(|g|2 − ρ2). (12)

The explicit value of the coefficients of equations (11), (12) is of major interest for our purpose.
Their expressions have been computed in terms of theα parameters, representing the external
field strength,ν, normalized frequency, andδ = ±1, characterizing the polarization. They are
given in appendix A.

3. Classification of the DS systems

3.1. A word about damping

The last term in equation (11) accounts for the damping. We shall neglect it completely
thereafter. More precisely, we setσ̂ = 0. This means that the pulse amplitude is large enough,
and its length long enough, so thatσ̃ has the order of magnitude ofε3, instead ofε2, as was
assumed above. This simplification is also allowed for the following reasons: the damping only
appears in the system (11), (12) through the term i6g in the first equation. A very important
feature is that the effect of damping on the auxiliary field8 is completely negligible for the
considered scaling. In other words, if the damping does not completely dominate the nonlinear
self-modulation of the fast-oscillating wave described byg, the long waves described by8
are not absorbed in a significant way (see section 4.2.2 for details concerning the physical
interpretation of8 ∝ ψ).

The effect of the damping term i6g in equation (11) can be largely determined from simple
qualitative considerations. Neglecting all terms except this one, equation (11) is reduced to
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∂τg = −1
τ0
g , whose solution isg = g0e

−iτ
τ0 = g0e

−it
T0 , whereT0 = τ0

c0ε2 . T0 is thus the absorption
time, given by

T0 = 2(α + δν)(α + δν + 1)− δν
−c0σ̃mν2

. (13)

This expression coincides with the results of [24]. Further, most of the effects described
by the numerical computations below occur very quickly (in the examples presented in the
various figures, the dimensionless time variableT varies from 0.05 to 0.4). Therefore, it can be
reasonably assumed that the effect of a nonzero but quite small damping term is not qualitatively
appreciable after such a small propagation time. For all these reasons, the solutions neglecting
absorption can reasonably describe the real situation (with damping). It must be kept in mind
that the approximation is only valid if the pulse is small enough, the power input large enough,
and if the propagation time is not too lengthy.

On the other hand, the solutions of the DS system have the advantage of a great generality,
and of being the matter of important mathematical research with many results of physical
interest. Therefore, we restrict ourselves to the case where the model is the DS system. In
the various restrictions for the system (11), (12) listed below, we make the same assumption
σ̂ = 0, for consistency. It is very easy to take the damping into account in these equations, by
simply keeping the term i6g instead of dropping it.

3.2. Reductions to the NLS equation

Equation (12) is trivially integrated for any 1D reduction, that is, from the mathematical
point of view, when looking for solutions depending only onτ and a single space variable
ξ̂ = aξ + bη + cζ (a, b andc being real constants). The so-called ‘temporal’ caseξ̂ = ξ

corresponds to propagation in a 1D waveguide, while the so-called ‘spatial’ casea = 0
corresponds to a continuous wave propagating in a plane guide. In these particular cases the
evolution equation (11) always reduces to the NLS equation, but with different values of the
nonlinear constant.

Assuming that8 vanishes aŝξ →−∞, it can be expressed as

iA∂τg +B ′∂2
ξ̂
g +D′g(|g|2 − ρ2) = 0 (14)

where the constantsB ′ andD′ read as follows:

• Temporal case.
The assumption iŝξ = ξ . Then

B ′ = B and D′ = D. (15)

• Spatial case.
We assume thata = 0, and normalizeb andc so thatb2 + c2 = 1. Then

B ′ = C and D′ = D − EG
F
. (16)

• Spatiotemporal case.
This is the general case. We seta = cosθ andb2 + c2 = sinθ . The two special cases
above are found again by settingθ = 0 orπ/2. Here we have

B ′ = B cos2 θ +C sin2 θ and D′ = D +
EG sin2 θ

cos2 θ − F sin2 θ
. (17)
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Another case where equation (12) integrates is the 2D reduction where the fields do not
depend onξ , that is, where the wave is not modulated longitudinally. That is the situation
called ‘spatial’, describing the variations during propagation of some continuous wave. In this
case the evolution equation (12) reduces to the so-called 2D NLS equation:

iA∂τg +B ′(∂2
η + ∂2

ζ )g +D′g(|g|2 − ρ2) = 0 (18)

where the constantsB ′ andD′ have the same value as in the spatial 1D case given above
(equation (16)).

Other 2D reductions of the system (11), (12) are obtained by assuming thatg and8 do not
depend e.g. onη, and describe the evolution of a wave that is not modulated in they-direction,
e.g., because it propagates in some planar waveguide. In any of these reductions, the second
equation is not trivial, and the system has the same form as the so-called DS system.

3.3. The integrable DS equation

In order to check the integrability of its 2D reduction to the DS system, the model derived in
the previous section is reduced to

i∂T φ + ∂2
Xφ + ε1(∂

2
Y + ∂2

Z)φ + ε2φ(|φ|2 − σ 2) + rφψ = 0 (19)

q∂2
Xψ + (∂2

Y + ∂2
Z)ψ = (∂2

Y + ∂2
Z)(|φ|2 − σ 2) (20)

through the transform

X = ξ

Y =
√∣∣∣∣BC

∣∣∣∣η
Z =

√∣∣∣∣BC
∣∣∣∣ζ

T = B

A
τ

ψ = −F
G

√∣∣∣∣DB
∣∣∣∣8

φ =
√∣∣∣∣DB

∣∣∣∣g
σ 2 =

∣∣∣∣DB
∣∣∣∣ ρ2

(21)

whereε1 = ±1, ε2 = ±1 andr andq are real constants. They read

ε1 = sgn(BC)

ε2 = sgn(BD)

r = −ε2
EG

FD

q = −ε1
C

FB
.

(22)

The so-called 2D spatio-temporal reduction of system (19), (20) is obtained under the
assumption that the fieldsφ andψ do not depend on the variableZ. More generally, a single
transversal space variablêY = Y cosθ + Z sinθ should be considered, but all values ofθ
are equivalent because of rotational symmetry around the propagation direction (X-axis). We
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assume further thatg (∝ φ) vanishes at infinity, so thatσ 2 = 0. As mentioned in the previous
section, system (19), (20) reduces to the DS system, which reads as follows:

i∂T φ + ∂2
Xφ + ε1∂

2
Y φ + ε2φ|φ|2 + rφψ = 0 (23)

q∂2
Xψ + ∂2

Yψ = ∂2
Y |φ|2. (24)

It is thus clear that system (19), (20) is a 3D generalization of the DS system. The DS
system (23), (24) is completely integrable by means of the IST method when the two following
conditions are satisfied:

ε1q = ε2r + 1 (25)

ε1q = −1. (26)

Condition (25) obviously reduces toε2r = −2 when (26) is satisfied, but by itself it is sufficient
to ensure the existence of the bilinear Hirota form of the system. When integrable, the DS
system admits anN -soliton solution, but the involved solitons are quasi-1D. Lump solutions,
algebraically decaying in all directions, exist whenε1ε2 = −1. Solitons exponentially
decaying in all directions, called dromions, exist whenε1 = 1. Dromions involve nonvanishing
asymptotic conditions at infinity for the auxiliary fieldψ , that is, the zero-frequency amplitude
8. There are, in fact, four integrable systems, depending on the signsε1 andε2. The integrable
case withε1 = +1 is called DS I for both values ofε2. Whenε1 = −1, it is called DS II. In the
general case, system (23), (24) with arbitrary coefficients is not integrable. In [25] it is called
the Djordjevic–Redekopp system, while the name DS (DS I and DS II) is kept to the integrable
case only. We shall use the terminology of [26], and denote even the non-integrable case by
DS.

The integrability conditions (25) and (26) can be solved explicitly in the present case. They
yield ε2r = −2, that reduces, using the expressions (25) and (71)–(74) of the coefficients, to
�(= α + δν) = − 1

2. The simplification of the result is due mainly to the fact that the
complicated coefficientsF andG appear inr only through their ratio, that has a very simple
expression. But when this condition is satisfied, the coefficientC (its expression is (70))
vanishes, and so does the reduced coefficientq. Therefore, condition (26) cannot be satisfied:
the system is never integrable by means of the IST method.C = 0 means the vanishing
of the transverse derivative in equation (11) for the oscillating wave, whileq = 0 means
the vanishing of the longitudinal derivative in equation (20) for the rectified field. The non-
equivalence betweenq = 0 andC = 0 is explained by the fact that some coefficients in
transform (21) are not finite whenC = 0. Whenq = 0, the latter equation (20) is trivially
integrated, and the system reduces to a 2D NLS equation. AsC = 0, the first equation (11)
of the system reduces to a 1D NLS equation, apart from the term involving8. Thus our
attempt to obtain a completely integrable system forces it to become closer to the 1D NLS
equation. This is related to the fact that the only completely integrable situation is when the
system reduces to the 1D NLS equation. Complete integrability is not a purely mathematical
property, but is related to the existence of an infinite number of conserved densities. Through
the above-mentioned features, it is apparent that such conservation laws cannot be satisfied in
ferromagnets except for 1D situations.

The condition necessary for the existence of a bilinear Hirota form for the DS system (23),
(24) is (25), without (26). It can be reduced to some algebraic equation involvingα and�:
α2(1 + 3�+ 8�2 + 8�3)+α�(3 + 19�+ 28�2 + 8�3)+ 2�2(2 + 9�+ 10�2 + 4�3) = 0. This
equation has no positive real solution when� ∈ (R \ [−1, 0]), which is its allowed range.
Thus the bilinear Hirota form also never exists in ferromagnets, except for 1D problems.
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Table 1. The various types of DS systems.

(ε1, sgn(q)) Type

(1, 1) elliptic–elliptic
(1,−1) elliptic–hyperbolic
(−1, 1) hyperbolic–elliptic
(−1,−1) hyperbolic–hyperbolic

3.4. A classification

The non-integrable situation, when at least one of the conditions (25) and (26) is not satisfied,
is also classified according to the value ofε1 and the sign of theq coefficient, as table 1
shows. Despite the fact that the properties may differ according to the dimensionality, the
same classification is also clearly relevant for the 3D generalization (19), (20).

A canonical form has been given in [25], for the system (23), (24) and more general 2D
systems of cubic NLS type. It reads

i∂TQ +O1Q = PQ (27)

O2P = O3Q
∗Q (28)

whereO1,O2, andO3 are second-order linear differential operators. In the present case,

O1 = ∂2
X + ε1∂

2
Y

O2 = q∂2
X + ∂2

Y

O3 = −ε2O2 − r∂2
Y

 P = −rψ − ε2|φ|2
Q = φ (29)

thusε1 andq are either positive or negative whenO1 andO2 are either elliptic or hyperbolic,
respectively.

The relative sign of the dispersion–diffraction term and the cubic nonlinear term isa priori
also important. It is related to the signature ofO3 in the theory of [25]. But the distinction
between the incident oscillating pulse described byφ and the long waves described byψ is of
major interest for our purpose, while it is hidden by the canonical form. Therefore, we have
left this latter presentation to one side. Recall that, in the case of the 1D NLS equation (14),
modulational instability occurs when theB ′D′ product is positive, and an incident plane wave
is destroyed, bunching into solitons (Benjamin–Feir instability). WhenB ′D′ < 0, plane waves
are stable, and only dark-soliton solutions exist. The former case is referred to as focusing, the
latter as defocusing. It has been shown (see, e.g., [27]) that collapse or blow-up of the solution
of the 2D NLS equation (18) may occur whenB ′D′ > 0, while in the case whereB ′D′ < 0
the solution always exists globally. An analogous feature has also been proved in the 3D case.

With respect to the 2D DS system, or the 3D version (19), (20), an analogous feature is
expected, at least when the first equation (23), or (19) are elliptic. Thus the caseε2 = +1 will be
referred to as focusing, andε2 = −1 as defocusing. The classification rests on an elementary
mathematical analysis of the coefficients, that is detailed in appendix B, and the result is
summarized in figure 1, on a plot of the dispersion relation. The three branches are labelled N,
PA , PO, for negative helicity, acoustic with positive helicity and optical with positive helicity,
respectively. It is seen that most sign cases occur. The elliptic–elliptic defocusing case, and
the hyperbolic–hyperbolic case are not reached.

A regimen transition occurs on the PO branch, for the normalized frequencyν = ν0

defined by expression (81) in appendix B. The following asymptotic expression can be given
for ν0:

ν0 = 2α +
1

2
+

1

8α
+ O

(
1

α2

)
(30)
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Figure 1. A plot of the dispersion relation, with mention of the classification of the DS models.
Notice the thresholdν0. The three branches are labelled PO, N, PA, for optical with positive
helicity, negative helicity and acoustic with positive helicity, respectively.ν = ω/m is a normalized
frequency,m the saturation magnetization andα the ratio of the external field tom.

asα→ +∞. The approximation has been checked numerically, it is valid with a precision of
better than 0.3% as soon asα > 2. For small values ofα,

ν0 = 1 + 1.25α + 0.4375α2 + O(α3). (31)

This approximation has also been checked numerically, it is valid as soon asα 6 0.7, with the
same precision as above.

The classification would be incomplete without mentioning the sign of the interaction
constantr: it is positive on both the optical branches N and PO, and negative on the acoustic
branch PA. The magnitude of the coefficientsq andr is also of interest; the dependency of
these coefficients with respect to the physical parametersα andν is detailed in appendix B.
The main features are the following:q tends to infinity for largek on the three branches, but
is bounded anywhere else. It vanishes at the transition pointν = ν0 on the PO branch. The
order of magnitude of the bound is given by

qm = 1√
α
± 1

2α
+ O

(
1

α
√
α

)
. (32)

The plus and minus signs hold, respectively, for the PA and PO branches, andqm is a local
minimum. The local maximum ofq on the PO branch is reached at aboutν = 3α/2, and is
about1

4. More detailed and precise definitions are given in appendix B.
The interaction coefficientr vanishes for high frequenciesν on the PO and N branches,

but also for low frequenciesν ' 0 on the PA branch. Elsewhere its absolute value is bounded
by 1, except near the pointk = 0 of the optical branch, where it tends to infinity.

The signature of the operatorO3, or rather of the operatorD3 defined byD3eiEk·Ex =
−O3eiEk·Ex , is easily determined using these results. It is definite negative on the PA branch and
on the PO branch forν < ν0, and hyperbolic elsewhere. The fact that|r| 6 1 intervenes in
the justification of these features is, in a way, as important as the various signs. The condition
for modulational stability given by [25] isD1D2D3 > 0 for all Ek, whereD1 andD2 are defined
in the same way asD3. It is easily seen that this condition is never satisfied in the situation
considered here: the system is always modulationally unstable, in the sense of [25]. In the
same paper a condition for the existence of blow-up (called there self-focusing) is given, in
the case where bothO1 andO2 are elliptic (what we call elliptic–elliptic DS), thus definite
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Figure 2. The elliptic–elliptic DS model for the positive optical wave: the pulse collapses after
T = 0.05 propagation time. Initial dataφ = 3 exp(−4(X2 + Y 2)). Parameters:α = 1, ν = 2.2,
so thatq = 0.2 andr = 5.

positive with their actual signs. WhenO3 is definite negative blow-up always occurs, when
O3 is hyperbolic, blow-up may or may not occur. The former case occurs on the PO branch
for ν < ν0, as illustrated in figure 2.

4. Numerical computations

4.1. When the rectified field obeys an elliptic equation

4.1.1. Purpose and algorithm.Here we do not intend to make an extensive numerical study
of the system derived in section 2, but only to give some examples of numerical solutions, in
order to illustrate the above classification. Further, we restrict ourselves to(2 + 1) dimensions,
mainly because of the difficulties involved in the numerical resolution of the elliptic–hyperbolic
system.

The algorithm used for the resolution of the elliptic–elliptic and hyperbolic–elliptic
systems is rather simple. It reads as follows: we want to solve system (23), (24) with the
initial data

φ(X, Y, T = 0) = f (X, Y ). (33)

Notice that equation (24) does not involve initial Cauchy data forψ but boundary values in
theXY plane. We assume here thatψ vanishes at infinity. We build some recurrent sequence
of functionsφn, ψn, solving for eachn the following Cauchy problem:

φn+1(X, Y, T = 0) = f (X, Y )
(i∂T + ∂2

X + ε1∂
2
Y )φn+1 = −ε2φn|φn|2 − rφnψn

(q∂2
X + ∂2

Y )ψn+1 = ∂2
Y |φn+1|2.

(34)

The equations of system (34) are linear and can be solved by Fourier analysis. We define the
Fourier transformF̂ of any functionF by

φ(X, Y, T ) = 1√
2π

∫
R2
φ̂(k, l, T )ei(kX+lY ) dX dY. (35)

Then system (34) is solved as

ψ̂n+1 = l2

qk2 + l2
|̂φn+1|2 (36)

φ̂n+1 =
[
f̂ + i

∫ t

0
( ̂ε2φn|φn|2 + rφ̂nψn)e

i(k2+ε1l
2)t ′ dt ′

]
e−i(k2+ε1l

2)t . (37)
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Figure 3. The hyperbolic–elliptic DS model for the
positive acoustic wave: the pulse takes an elliptic shape
when spreading out through diffraction and dispersion.
Contour plot of|φ|. Propagation timeT = 0.4 and the
initial dataφ = 3 exp(−4(X2+Y 2)). Parameters:α = 1,
ν = 0.4, so thatq = 1 andr = −0.625.

Figure 4. The hyperbolic–elliptic DS model for the
positive acoustic wave: the unilateral focusing of the
pulse. The parameters are the same as in figure 3,
except the propagation timeT = 0.1 and the initial data
φ = 6 exp(−4(X2 + Y 2)).

The fixed point of the sequence(φn, ψn)n is the solution of the Cauchy problem for system (23),
(24). The above formulae are easily implemented on a PC using fast Fourier transforms. The
numerical scheme converges quickly, but only forT values less than some bound, that decreases
when the initial power grows. When this maximum is less than the desired propagation distance,
the same scheme is repeated several times along the propagation.

4.1.2. Elliptic–elliptic case. On the PO branch, for normalized frequenciesν less thanν0,
the DS system is of the elliptic–elliptic type. The 1D reduction is focusing [17]. It has been
shown [26] that it behaves similarly to the NLS model: when the energy of the pulse is small
enough, it spreads out, while it blows up when the power input is sufficient. We present a set
of evolution types almost all corresponding to the same Gaussian initial condition

φ = 3e−4(X2+Y 2). (38)

The external field strength is chosen so thatα = 1, and the normalized frequency isν = 2.2.
Then the parameters of the DS system (23), (24) areq ' 0.2 andr = 5. At the short
propagation timeT = 0.05 one can see the beginning of the blow-up shown in figure 2. The
long wave pulse emitted has the same shape as shown in figure 5, but with a much narrower
size in relation to the main pulse size. It is known from [16] that damping will stop the blow
up during the further propagation of the pulse.

4.1.3. Hyperbolic–elliptic case. On the PA branch, the type of DS system is hyperbolic–
elliptic. The behaviour is not so simple because the wave is expected to be longitudinally
self-focused, according to [17], but to be defocused transversely. Indeed, for the same initial
data as above, the pulse takes indeed a non-circular shape, as shown in figure 3. However, the
effect is not very strong, and the main behaviour is defocusing. A higher-power input can lead
to pulse compression along one direction, as shown in figure 4. Some part of the total power
moves away from the main peak, at its foot along the focusing direction, with a low intensity.
This leads to the quadrilobate pulse shape seen in figure 4.
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Figure 5. The hyperbolic–elliptic DS model for the positive acoustic wave: the typical shape of
the emitted long waveψ . This figure corresponds precisely to the high-frequency pulse shown in
figure 3.

The emitted long wave corresponding to the pulse of figure 3 is plotted in figure 5. It
presents a central positive peak, and two smaller negative ones, on both its sides. This
characteristic shape seems to occur for most localized pulses when the second equation of
the DS system (23), (24) is elliptic. It size obviously depends on the size of the high-frequency
pulse, but also on theq parameter. For large values ofq, as occurs on the PA branch when the
wavenumber is large, the size of the long wave pulse along theX-axis becomes huge. At the
limit q → +∞ this pulse becomes almost 1D, modulated along theY direction only.

4.2. When the rectified field obeys an hyperbolic equation

4.2.1. Another numerical scheme.The second equation (24) of the DS system, governing
the evolution of the rectified field, is hyperbolic for the waves with negative helicity, and on
the PO branch for normalized frequencies higher thanν0. This hyperbolicity strongly modifies
the behaviour of the whole system.

First, the numerical scheme presented in the section above does not yield a resolution of
the elliptic–hyperbolic DS system, because whenq is negative, formula (36) is singular. In
fact, the hyperbolic character of the second equation (24) of the system radically changes the
allowed boundary conditions forψ . Due to propagation along the directionsX ±√−qY , ψ
cannot be set to a fixed value in both the casesX, Y → −∞ andX, Y → +∞. A numerical
scheme is given in [9], it works as follows: the rectified fieldψ is replaced by a primitive
9 such that∂Y9 = ψ , and the characteristics of the hyperbolic operator are taken as new
variablesX̃ = X − cY andỸ = X + cY ; c = √−q is the velocity of this propagation mode
in the frame that moves with the high-frequency pulse (take care to avoid confusion with light
velocity, light velocity in the medium in denoted byc0 in the paper). Equations (23), (24) are
transformed into

[i∂T + (1− q)(∂2
X̃

+ ∂2
Ỹ
) + 2(1 +q)∂X̃∂Ỹ ]φ + ε2φ|φ|2 − rcφ(∂X̃ − ∂Ỹ )9 = 0 (39)

∂X̃∂Ỹ9 =
1

4c
(∂X̃ − ∂Ỹ )|φ|2. (40)



7920 H Leblond

Figure 6. The elliptic–hyperbolic DS model for the wave with negative helicity: the typical shape of
the emitted long waveψ . Propagation timeT = 0.16 and the initial dataφ = 3 exp(−4(X2 +Y 2)).
Boundary values:ψ1(X̃) ≡ 0 ,ψ2(Ỹ ) ≡ 0. Parameters:α = 1, ν = 0.5 so thatc = √−q = 1.5
andr = 0.4.

The initial and boundary conditions are

φ(X̃, Ỹ , 0) = f (X̃, Ỹ )
lim

Ỹ→+∞
9(X̃, Ỹ , T ) = 91(X̃, T )

lim
X̃→+∞

9(X̃, Ỹ , T ) = 92(Ỹ , T ).

(41)

The two boundary conditions can be expressed in a simple way when discretizing on a square
grid, and the discrete version of the propagation equation (40) for9 can be solved by an explicit
computation at each step, assuming that the required value ofφ is known. Equation (39) is
then solved by a fixed-point method, using finite differences.

4.2.2. Boundary conditions.The boundary conditions (41) have been slightly modified with
regard to [9], in order to respect causality in the present physical situation. Indeed, according
to the scaling, the characteristic variablesX̃ andỸ of the hyperbolic equation read

X̃ = ε
(
x − V t − c

√∣∣∣∣BC
∣∣∣∣y
)

Ỹ = ε
(
x − V t + c

√∣∣∣∣BC
∣∣∣∣y
)
.

(42)

Thus the limits as̃X→ +∞ or Ỹ → +∞ involved by the boundary conditions (41) correspond
to the past:t →−∞. The physical phenomenon that arises here has already been considered
in [28]: the fast-oscillating wave emits a ‘low-frequency’ wave, correctly speaking, a solitary
long wave. This solitary wave propagates isotropically in space with its own velocity, and
two situations can arise: when the emitted wave travels faster than the main pulse, it stays
around it, and accompanies it. When the emitted wave travels slower than the main pulse,
it is left behind it and concentrates on a cone analogously to a supersonic boom. In(2 + 1)
dimensions, this is described by the elliptic–hyperbolic DS system, with vanishing boundary
conditions91 ≡ 0 and92 ≡ 0. A sample of the corresponding emitted long wave is plotted
in figure 6. The behaviour of the main pulse is not significantly modified with respect to the
elliptic–elliptic case, for these vanishing boundary conditions.
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Nonvanishing boundary conditions give rise to a set of pulse behaviours, some of which
are rather exotic. Before presenting a sample of these behaviours, let us precise the physical
interpretation of these boundary conditions. Notice first that the numerical scheme of [9]
involves boundary values91(X̃) and92(Ỹ ), for the quantity9 that appears in equations (39),
(40), while the quantity that has a physical meaning isψ = ∂Y9, indeed

ψ = −F
G

√∣∣∣∣DB
∣∣∣∣(H 0,x

2 +M0,x
2 ) (43)

whereH 0,x
2 + M0,x

2 = B
0,x
2 is a component of the magnetic field. The boundary values

corresponding toψ areψ1 = −c d91(X̃)

dX̃
andψ2 = c d92(Ỹ )

dỸ
.

ψ1 andψ2 are limits ofψ ast →−∞, or according to (42), asx → +∞. Indeed, because
the main pulse travels faster that these waves, the initial state of the latter, corresponding to
the past, is located in front of the former.ψ1 obviously describes a wave propagating at the
speed +c in theY direction in theXY frame that moves with the main pulse. It is interesting
to compute its velocity with regard to thexy frame of the laboratory. First, expression (22) of
c reduces equation (42) to

X̃ = εV
(

y

V
√|F | +

x

V
− t
)
. (44)

The value of the speed follows from (44), it reads

EV1 = V
√|F |

1 + |F | (1,
√
|F |). (45)

In the same way,ψ2 represents a wave propagating at speed−c in the moving frame and
EV2 = V

√|F |
1+|F | (

√|F |,−1, 0) in the lab frame. The tips of the speed vectorsEV1 and EV2 belong to
a circle whose diameter is [(0, 0), (V ,0)] in thexy plane. These vectors make an angleθ with
thex-axis, that is the direction of the group velocityEV of the main pulse, so that cotθ = √|F |.
According to (22),q is zero whenF is infinite. Thus the frequency thresholdν0 between the
situations where equation (24) is either elliptic or hyperbolic on the PO branch corresponds
to an angleθ = 0, i.e. to‖ EV1‖ = V x1 = V . ‖ EV1‖ andV x1 are always smaller thanV in the
hyperbolic case, becoming equal to it at the threshold. The speed of the considered propagation
mode should be greater thanV in the elliptic case, according to the above interpretation.

The model therefore describes a three-wave interaction, between the high-frequency wave
propagating at speedV and the two 1D long waves described byψ1(X̃) andψ2(Ỹ ). The
geometry of the problem, and the interpretation of the boundary valuesψ1(X̃) andψ2(Ỹ ) as
free incident waves are illustrated in figure 7. Notice that not all long waves can interact with
the high-frequency pulse. The polarization is fixed: it must be along thex-axis, as can be
seen through definition (43) ofψ . Second, the propagation direction must be the same as
the direction in which the high-frequency pulse can emit a long wave. This yields a kind of
resonance. In fact, any point of the matched plane long wave will see the high-frequency pulse
and interact with it, because in the frame moving with the high-frequency pulse, the plane long
wave travels parallel to its own plane, and seems motionless.

4.2.3. Defocusing case.The self-interaction of the wave with negative helicity is defocusing.
For vanishing boundary values, the interaction with the rectified fieldψ does not appreciably
modify the behaviour of the input pulse. But a nonzero value ofψ at infinity, that is, nonzero
incident wavesψ1(X̃) andψ2(Ỹ ), can strongly modify the behaviour. The result obviously
depends on the input, especially on the signs ofψ1(X̃) andψ2(Ỹ ). For negativeψ1 and
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Figure 7. The hyperbolic–elliptic DS model: geometry and boundary values interpretation. The
incident long waves described byψ1(X̃) andψ2(Ỹ ) travel with the speedsEV1 and EV2 respectively.
The high-frequency wave is localized, and travels at speedEV . BecauseV is greater thanV1 and
V2, and the velocities are matched, the three waves arrive in the interaction area simultaneously,
and interaction can occur.

Figure 8. The elliptic–hyperbolic DS model for the wave with negative helicity: splitting of
a single pulse into two through interaction with long waves. Propagation timeT = 0.36 and
the initial dataφ = 3 exp(−4(X2 + Y 2)). Boundary values:ψ1(X̃) = −60/ cosh2(4X̃) ,
ψ2(Ỹ ) = +60/ cosh2(4Ỹ ). Parameters:α = 1, ν = 0.5 so thatc = √−q = 1.5 andr = 0.4.

positiveψ2, the Gaussian input pulse can be cut into two parts (see figures 8 and 9). Consider
the contour plot presented in figure 9: the energy of the waveψ2(Ỹ ) concentrates about the
first diagonalỸ = X− cY = 0, while the energy of the other waveψ1(X̃) concentrates about
the second diagonal̃X = X + cY = 0. ψ1 being negative yields an interaction factorrψ
which is negative at this point (r is positive on both the N and the PO branches), and thus
corresponds to a defocusing interaction. The positiveψ2 yields a focusing interaction about
the first diagonal. The pulse energy focuses and concentrates about the first diagonal, while
its amplitude takes very low values, along the second one, where defocusing occurs. Finally,
the interaction between the pulse and the long waveψ appears to be repulsive in the region
whereψ < 0, and attractive in the region whereψ > 0.

Another example is given by figure 10: with the same parameters and initial and boundary
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Figure 9. The elliptic–hyperbolic DS model for the wave
with negative helicity: splitting of a single pulse into two.
Contour plot of both the high-frequency pulse and the long
waves interacting together. All the parameters, initial and
boundary data are the same as in figure 8.

Figure 10. The elliptic–hyperbolic DS model for the
wave with negative helicity: the interaction prevents
the pulse from spreading out. Notice the pointed end.
All parameters, initial and boundary data are the same
as in figure 8, except thatψ1(X̃) = +60/ cosh2(4X̃).

data, except a sign change ofψ1, so that both boundary values ofψ are positive, and thus the
whole interaction is focusing. The peak is very sharp, and the interaction has partially prevented
it from spreading out. The peak height is indeed still 2.4 (in normalized units, according to
the above variable changes) in figure 10 after a propagation time ofT = 0.36, instead of 0.5
in the linear case. Here the focusing also gives rise to an attractive effect. The pulse energy
concentrates on the point whereψ is positive, giving rise to a rather particular four-branch
star shape. Further, the focusing is stronger at the point where the two long waves cross one
another, so that the pulse ends with a pointed tip.

A change in the length of the long wave pulsesψ1 andψ2 modifies the behaviour of the
main pulse. Figure 11 shows a contour plot of both the high-frequency pulse and long waves,
for values ofψ1 andψ2 concentrated on much shorter peaks. Instead of the four-branch star
of figure 10, the pulse takes the shape of a square, whose sides are approximately parallel to
theX andY axes. The spreading out occurs despite the interaction, only the pointed tip still
exists.

4.2.4. Focusing case. The self-interaction of the PO wave is focusing. For normalized
frequenciesν > ν0, the modulation evolution is described by an elliptic–hyperbolic DS system.
As in the defocusing case, the interaction with the emitted long wave does not modify the
behaviour of the high-frequency pulse in an important way. For low-power input, the pulse is
spread out, while it collapses when the power input is higher.

First we consider an input pulse whose energy is not sufficient for collapse. If the incident
long wavesψ1(X̃) andψ2(Ỹ ) are large enough and positive, the interaction can lead to a
stabilization of the pulse. The wave interaction is then focusing (r > 0), and can balance
the defocusing effects of both self-interaction and diffraction–dispersion. An example of such
stabilization is given in figure 12.

Figure 13 presents the shape of the long wave, in this special situation. It can be noticed,
through an attentive study of the figure, that the maximal wave amplitude is slightly higher
after the interaction than before. The central peak is mainly the sum of the two waves.

Taking a higher-power input leadsa priori to collapse. Is it possible that the interaction
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Figure 11. The elliptic–hyperbolic DS model for the
wave with negative helicity: an initially round pulse
takes a square shape. Contour plot of both the high-
frequency pulse and the long waves interacting together.
The coordinates are characteristic of the hyperbolic
equation: X̃ = X + cY , Ỹ = X − cY . The
parameters and initial data are the same as in figure 8.
The boundary values areψ1(X̃) = +45/ cosh2(15X̃),
ψ2(Ỹ ) = +45/ cosh2(15Ỹ ).

Figure 12. The elliptic–hyperbolic DS model for the
wave with positive helicity: stabilization of a pulse
through interaction with long waves. The figure presents
the evolution during propagation (variableT ) of some
X̃-cut profile of the 2D pulse, precisely defined by:
maxỸ (|φ(X̃, Ỹ , T )|). Initial dataφ = 3 exp(−4(X2 +
Y 2)). Boundary values:ψ1(X̃) = 32/ cosh2(4X̃),
ψ2(Ỹ ) = 32/ cosh2(4Ỹ ). Parameters:α = 1, ν = 3.65
so thatc = √−q = 1 andr = 0.6. (The oscillations
afterT = 0.4 are due to reflections of the wave on the
numerical box boundary, these reflected waves can be
seen at the upper-right side of the plot.)

Figure 13. The elliptic–hyperbolic DS model
for the wave with positive helicity: the shape
of the long waves. Initial data, boundary values
and parameters are the same as in figure 12.
Propagation timeT = 0.4.

with the long wave prevents the collapse? A remarkable situation is shown in figure 14.
Through defocusing interaction with adequate value of the incident long waves, (indeed, as
above, the behaviour depends crucially on the sign of the latter), the initial Gaussian pulse is
cut into four parts. The energy of each part is less than that required for collapse, and collapse
is avoided here. Further evolution of the pulses shows, besides their spreading out, that they
continue to move away from each other.

5. Conclusion

The model that describes the evolution of some localized electromagnetic pulse in a saturated
ferromagnetic bulk medium has been derived. It is a 3D version of the DS system, with an addi-
tional damping term. The behaviour of the solutions of this system is expected to depend on co-
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Figure 14. The elliptic–hyperbolic DS model for the wave
with positive helicity: an initially Gaussian pulse is cut into
four parts through interaction with long waves. Initial data
φ = 6/ exp(−4(X2 + Y 2)). Boundary values: ψ1(X̃) =
−100/ cosh2(4X̃), ψ2(Ỹ ) = −100/ cosh2(4Ỹ ). The parameters
are the same as in figure 12. Propagation timeT = 0.15.

efficient values, that have been classified according to the usual classification of the DS system.
Most of the possible situations occur, it only fails in the hyperbolic–hyperbolic and the

elliptic–elliptic defocusing cases. It has been seen that the(2 + 1)-dimensional reduction with
negligible damping (the DS system) is never integrable by means of the IST method in the
considered situation. Examples of numerical resolution of this(2 + 1)-dimensional reduction
have been given in order to illustrate every case of the classification. The behaviour is mainly
the same as that of the corresponding 2D NLS model, showing collapse for the ‘optical’
wave with positive helicity, or spreading out. Focusing in the transverse direction while the
pulse is defocused in the longitudinal direction also occurs in the hyperbolic–elliptic situation.
This occurs for the waves of the PA branch, that are mainly the MSW. Notice that blow-up,
corresponding to an elliptical equation, has been observed in YIG thin films: the difference
can be explained by the fact that the present work would describe thick films, with a thickness
of the same order of magnitude as the pulse width.

Very interesting and surprising behaviour can arise due to the interaction between the pulse
and incident long waves, described by the elliptic–hyperbolic DS model. The initial pulse can
be cut into two of four parts, spread-out or collapse can be prevented at least partially, and
even pulse stabilization is possible. The examples always consider two symmetrical incident
long waves, to preserve the analogy with the dromion solutions of the completely integrable
situation. The case of a single incident wave is to be investigated in a more systematic study of
the system, together with the resolution of the 3D case. These effects are obtained on the PO
and N branches, that is, for the proper EM waves. From the experimental point of view, the
result has two drawbacks: first, because of the frequency dependence of the coupling coefficient
r (equation (86)), the efficiency of the interaction decreases for high frequencies. Thus the
observation of the effects for infrared frequencies would involve higher-power input for the
long waves. Second, the lower frequencies, close to the ferromagnetic resonance frequency
(polaritons), involve rather long wavelengths. However, the pulse length must be large with
respect to the wavelength, and the propagation length large with respect to the pulse length,
thus the sample size needed could become huge. It is thought that an adequate balance between
these two points would allow the observation of the predicted effects.

It must be noticed that, in the absence of incident matched long waves, the solutions
of the DS system do not differ qualitatively from those of the 2D NLS equation. Thus the
experimental results that were correctly described in a phenomenological way by the 2D NLS
equation are in good agreement with the present theory. The latter has the advantage of being
more rigorous from the mathematical point of view, which is interesting in itself, and can lead
to better quantitative results. The three-wave interaction described by the elliptic–hyperbolic
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DS system should be observable, and may lead to applications. Besides this, it must be noted
that the DS system is a very general model, that describes the nonlinear evolution of wave
modulation in quadratic nonlinear media in a wide range of physical contexts. Therefore,
the pulse behaviours reported in this paper are expected to occur in other physical situations.
The analogue of these phenomena in the frame of nonlinear optics, would especially lead to
applications of major interest, including the possibility of beam control.
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Appendix A. Details of the multiscale analysis

A.1. Derivation of the evolution equation for the fundamental wave amplitude

At second order, the equations regarding the fundamental frequencyn = 1 yield, as a
compatibility condition, the value of the velocity

V = u
(

1 +
δν

2�(� + 1)− δν
)

(46)

whereu = ω/k is the phase velocity. In this expression and what follows, the parameter

� = α + δν (47)

is used for convenience.
The second-order terms in the expansion read as

EH 1
2 =

( ik
ω2 (iδ∂η + ∂ζ )g

iδf
f

)
EM1

2 = −(γf + i3∂ξg)

( 0
iδ
1

)
(48)

wheref is an unknown function, the analogue tog belonging to this second order. The constant
is given by

3 = −2δ

um

1

2�(� + 1)− δν . (49)

The termsEH 2
2 and EM2

2 vanish, while the equations for the zero-harmonic or mean-value terms
EH 0

2 and EM0
2 are to be partly sought at a higher order, see the next section.

The compatibility condition at orderε3 for the fundamental the frequency term yields the
evolution equation (12) forg, the computation is detailed below. The equations coming from
(2) are reduced by lengthy but straightforward calculation to

H
1,x
3 +M1,x

3 =
1

ω2

(
1− 2

V

u

)
∂ξ (iδ∂η + ∂ζ )g +

ik

ω2
(iδ∂η + ∂ζ )f (50)

γH
1,y
3 +M1,y

3 = iδ2−
[

iδ

ω2
∂ζ +

k2

ω4
∂η

]
(iδ∂η + ∂ζ )g (51)

γH
1,z
3 +M1,z

3 = 2 +

[
iδ

ω2
∂η − k2

ω4
∂ζ

]
(iδ∂η + ∂ζ )g (52)
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with

2 = θ1∂ξf + θ2∂τg + θ3∂
2
ξ g (53)

θ1 = 2iδ

um

1

2�(� + 1)− δν (54)

θ2 = −2i

mν

(� + 1)

�
(55)

θ3 = −δ
m2ν

4�(� + 1) + δν

[2�(� + 1)− δν]2
. (56)

The importance of the operator∂⊥ = iδ∂η + ∂ζ appears in these equations.
The expressions of theEM1

3 components derived directly from equations (50)–(52) are
reported in the equation coming from the Landau equation (1) at this third order

Em ∧ ( EH 1
3 − α EM1

3)− iω EM1
3 = V ∂ξ EM1

2 − ∂τ EM1
1 − ( EM1

1 ∧ EH 0
2 + EM0

2 ∧ EH 1
1 )

+
σ̂

‖ EM0
0‖
EM0

0 ∧ ( EM0
0 ∧ EH 1

1 + EM1
1 ∧ EH 0

0 ). (57)

Let us call EJ and EK, respectively, the left- and the right-hand sides of equation (57). The
compatibility condition is obtained by eliminatingH 1,y

3 andH 1,z
3 from they andz components

of equation (57). It reads

J
y

0 + iδJ z0 = Ky + iδKz (58)

whereJ y0 andJ z0 are the parts of the correspondingEJ components that do not contain the
components ofEH 1

3 . Explicit computation of the two members of equation (58) using all the
above expressions yields evolution equation (11).

A.2. Derivation of the equations governing the behaviour of the zero-frequency term

At order ε4, for the so-called mean-value or zero-harmonic fieldsEH 0
2 and EM0

2, the Maxwell
equations yield

∂2
ξ (
EH 0,x

2 + EM0,x
2 ) = 1

V 2
(∂2
η + ∂2

ζ )
EH 0,x

2 −
1

V 2
∂ξ (∂η EH 0,y

2 + ∂ζ EH 0,z
2 ) (59)

∂2
ξ (β
EH 0,y

2 + EM0,y
2 ) = 1

V 2
∂2
ζ
EH 0,y

2 −
1

V 2
∂η(∂ξ EH 0,x

2 + ∂ζ EH 0,z
2 ) (60)

∂2
ξ (β
EH 0,z

2 + EM0,z
2 ) = 1

V 2
∂2
η
EH 0,z

2 −
1

V 2
∂ζ (∂ξ EH 0,x

2 + ∂η EH 0,y
2 ). (61)

We setβ = 1− 1
V 2 . This can be reduced in the following way: first the equations are integrated

twice, and three new unknown functions8,8′,8′′ are defined, which are equal, respectively,
to the right-hand side members of these equations. This yields a simple expression of the
components ofEM0

2 in terms of those ofEH 0
2 and these8(j). This expression can be used in the

Landau equation at orderε2:

Em ∧ ( EH 0
2 − α EM0

2) = −( EM1
1 ∧ EH 1∗

1 + EM1∗
1 ∧ EH 1

1 ). (62)

Notice that this equation does not contain any damping term, since we assume that the damping
constantσ̃ has an order of magnitude ofε2, according to equation (6). The expressions for
EM0

2 and EH 0
2 then read

EH 0
2 =

 4
α

1+αβ8
′

α
1+αβ8

′′

 EM0
2 =

−4 +8
1

1+αβ8
′

1
1+αβ8

′′

 . (63)
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An additional equation governing the behaviour of these terms is obtained at orderε3 in
the Landau equation. It is the compatibility condition at this order, and reads

Em ·
[
V ∂ξ EM0

2 −
∑
p+q=0

( EMp

1 ∧ EHq

2 + EMp

2 ∧ EHq

1 )

]
= 0. (64)

Making use of the previous results, especially equation (63), in equation (64) yields

4 = 8− 2δ
3

V
(|g|2 − ρ2) (65)

whereρ2 is an arbitrary function of the variables(η, ζ, τ ) only. If EM0
2 is assumed to vanish as

ξ →−∞, it satisfies

ρ2 = lim
ξ→−∞

|g|2. (66)

Because only8, but not8′ nor8′′, appears in evolution equation (11) forg, we are only
interested in the equation governing the evolution of this field. The equations for the three
8(j) are straightforwardly derived from equations (59)–(61). The components ofEH 0

2 and EM0
2

are eliminated from these equations, using equation (10), and the definition of8(j). Indeed,
the left-hand side of equation (59) is exactly∂2

ξ 8, and so on. An adequate combination of
equations (60) and (61) shows that

∂2
ξ (∂η8

′ + ∂ζ8′′) = −1

V 2
∂ξ (∂

2
η + ∂2

ζ )H
0,x
2 . (67)

After integration with respect toξ , relation (67) allows the elimination of8′ and8′′ from
equation (59), yielding equation (12) that governs the evolution of8.

A.3. Expression of the coefficients

The above computation gives explicit expressions for all the coefficients involved in
equations (11) and (12). All these expressions are listed below, they are used for the
classification given in section 3. We make use of the parameter� = α + δν, for short-hand
notation:

A = 2

δν�
(2�(� + 1)− δν) (68)

B = 2�(4α(� + 1) + δν)

mν(2�(� + 1)− δν)2 (69)

C = δ

mν2
(2� + 1) (70)

D = −4δ(� + 1)

m�3
(71)

E = −2δ

�
(72)

F = (1 +α)(2�(� + 1)− δν)2
4(1 +α)�3(� + 1)− α(2�(� + 1)− δν)2 (73)

G = 2

m�2
F (74)

6 = −2σ̃m
δν

�
. (75)
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Appendix B. Study of the coefficients of the reduced DS-type system

B.1. Study ofε2

The first sign isε1 = sgn(BD). It has been studied in detail in [17]. Precisely, the NLS
equation derived in [17] can be presented as

iÃ∂τ g̃ + B̃∂2
ξ g̃ + C̃g̃|g̃|2 = 0. (76)

We use the sign (̃) in order to avoid confusion between the notation of the present paper and
that of [17]. Normalizations are indeed slightly different. We have

Ã = −m
3ν3

�2
A B̃ = −m

3ν3

�2
B C̃ = −m

5ν5

�4
D. (77)

It is then straightforward to see that sgn(BD) = sgn(B̃C̃). The result of [17] is thus valid, it
reads

ε2 = −δ. (78)

B.2. Study ofε1

ε1 is determined as follows. We first note thatε1ε2 = sgn(CD), and that the productCD
factorizes, using expressions (70) and (71). Thus

ε1ε2 = −sgn(�(� + 1)(2� + 1)). (79)

For the wave with negative helicity,δ = +1, ν takes any positive value, thus� > α, and
ε1ε2 < 0, thusε1 > 0. The dispersion relation presents two branches describing waves with
positive helicity andδ < 0. The acoustic branch PA corresponds to normalized frequencies
ν belonging to ]0, α[, while the optical branch PO corresponds toν > (1 + α). Elementary
analysis shows thatε1ε2 is negative on the acoustic branch and positive on the optical one. The
value ofε1 follows directly.

B.3. Sign of theq coefficient

From the definitions (22) it is easily seen that sgn(q) = −sgn(F ), and from (73) that the sign
of F is the sign of its denominator. Let us call−L this denominator, so that sgn(q) = sgn(L).
It factorizes into

L = −δν(α2 + 4�2(� + 1) + α�(3 + 4�)). (80)

For δ = +1,� is always positive, as isα, thusq is negative. Forδ = −1, on the acoustic
branch,� is still positive, thusq > 0. But on the optical branch,� < −1, and a sign change
can be expected. Indeed, the polynomialPα(�) = α2 + 4�2(� + 1) + α�(3 + 4�) tends to
−∞ as�→−∞, andPα(−1) is positive. Thus it admits one or three zeros in the considered
interval.

The theory of algebraic resolution of the third-degree equation applies as follows: the
transformW = � + (1 + α)/3 reduces the equationPα(�) = 0 toW3 + PW + Q = 0,
with P = −(4α2 − α + 4)/12 andQ = (8α3 + 24α2 − 3α + 8)/108. The discriminant is
1 = 4P 3 + 27Q2 = α2(16α3 + 12α2 + 3α + 7)/16. Forα > 0,1 is always positive, thus the
equation admits a unique real solution�0. It reads

�0 = − 1
6

(
3

√
8− 3α + 24α2 + 8α3 + 3

√
3α
√

7 + 3α + 12α2 + 16α3

+
3

√
8− 3α + 24α2 + 8α3− 3

√
3α
√

7 + 3α + 12α2 + 16α3 + 2(1 +α)

)
. (81)
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The corresponding value ofν is denoted byν0, and equal toα −�0. It satisfies the following
features: forν > ν0 , q is negative, while forν < ν0 , q is positive.

B.4. Absolute value of theq coefficient

The expression ofq reads

q = −δ|2� + 1|(α2 + 4�2(� + 1) + α�(3 + 4�))

2(1 +α)|�||(4α + 1)� + 3α| (82)

whereq diverges for two values of�; the first one is� = 0, corresponding toν = α: it is the
asymptotic value of the frequency on the acoustic branch. The other value of� for which |q|
tends to infinity does not correspond to a physical wave (it yieldsδ = −1 andα < ν < 1 +α).
Thusq shows no singularity for any frequency.

For waves with negative helicity (δ = +1), q is negative and its absolute value grows
monotonically fromq = −(2α+1)

α+1 , near the point(k, ω) = (0, 0), to infinity for large values of
ν. It has the following asymptotic expression:

q = −4ν2

(1 +α)(1 + 4α)
+ O(ν). (83)

For waves with positive helicity (δ = −1) from the acoustic branch,q is always positive.
It decreases from the valueq = (2α+1)

α+1 atν = 0, to some minimal value, and then increases to
infinity whenν tends toα, as mentioned above, with the asymptotic expression

q ' α

6(1 +α)(α − ν) +
4 +α

9(1 +α)
+ O(α − ν). (84)

Despite the fact that an explicit expression of the minimum can be written, it is too complicated
in practice. For large values ofα, this minimum is located at aboutν ' α − √α/2. As
ν = α ∓ √α/2, q has expression (32). It gives a good order of magnitude of the minimal
value ofq for α large enough, sayα > 10.

The behaviour ofq on the third branch, optical with positive helicity, is not so simple.
q cancels for the above-mentioned valueν0 of ν, and then decreases to−∞, with the same
asymptotic expression (83) as the expression ofq in the case of the wave with negative helicity.
Whenν varies from the singularity ofq to ν0, q passes through a minimum and then through
a maximum. For large values ofα, the minimum occurs atν ' α +

√
α/2, and the maximum

at ν ' 3α/2. An approximate value of the minimum is given by (32), while the maximum is
given by the value ofq whenν = 3α/2:

q = α − 1

4α − 5
. (85)

For small values ofα both the minimum and the maximum are smaller than 1+α and therefore
do not belong to the set of the values that have a physical meaning. Clearly, 3α/2 is smaller
thanα + 1 as soon asα < 2. It is not worth computing a more accurate limiting value because
the values ofq at the maximum and minimum are very close together, for all values ofα from
about 1 to 8. The value taken atν = α + 1 is a local maximum, and reads asq = α

2(1+α) .

B.5. Study of ther coefficient

According to expressions (71), (72), and especially (74), and using the resultε2 = −δ,
expression (22) ofr reduces to

r = δ

� + 1
. (86)
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The variations ofr follow directly: for negative helicity,r is positive and decreases from
1/(1 + α) whenν = 0, to zero asν tends to infinity. For positive helicity, on the acoustic
branch,r is also decreasing, but negative, varying from−1/(1 +α) whenν = 0, to−1 asν
tends toα. On the optical branch,r is positive, decreasing from +∞ asν tends to 1 +α and
to 0 asν tends to infinity.
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